IBM数据科学专业证书

IBM Data Science Professional Certificate

2498 次查看
IBM
Coursera
  • 完成时间大约为 10 个月
  • 初级
  • 英语, 韩语, 德语, 其他
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Create and access a database instance on cloud

Write basic SQL statements: CREATE, DROP, SELECT, INSERT, UPDATE, DELETE

Filter, sort, group results, use built-in functions, access multiple tables

Access databases from Jupyter using Python and work with real world datasets

课程概况

Data Science has been ranked as one of the hottest professions and the demand for data practitioners is booming. This Professional Certificate from IBM is intended for anyone interested
in developing skills and experience to pursue a career in Data Science or Machine Learning. This program consists of 9 courses providing you with latest job-ready skills and techniques covering a wide array of data science topics including: open source tools and libraries, methodologies, Python, databases, SQL, data visualization, data analysis, and machine learning. You will practice hands-on in the IBM Cloud using real data science tools and real-world data sets. It is a myth that to become a data scientist you need a Ph.D. This Professional Certificate is suitable for anyone who has some computer skills and a passion for self-learning. No prior computer science or programming knowledge is necessary. We start small, re-enforce applied learning, and build up to more complex topics. Upon successfully completing these courses you will have done several hands-on assignments and built a portfolio of data science projects to provide you with the confidence to plunge into an exciting profession in Data Science. In addition to earning a Professional Certificate from Coursera, you will also receive a digital Badge from IBM recognizing your proficiency in Data Science.

包含课程

课程1
什么是数据科学?

The art of uncovering the insights and trends in data has been around since ancient times. The ancient Egyptians used census data to increase efficiency in tax collection and they accurately predicted the flooding of the Nile river every year. Since then, people working in data science have carved out a unique and distinct field for the work they do. This field is data science. In this course, we will meet some data science practitioners and we will get an overview of what data science is today.LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

课程2
Open Source tools for Data Science

What are some of the most popular data science tools, how do you use them, and what are their features? In this course, you'll learn about Jupyter Notebooks, RStudio IDE, Apache Zeppelin and Data Science Experience. You will learn about what each tool is used for, what programming languages they can execute, their features and limitations. With the tools hosted in the cloud on Cognitive Class Labs, you will be able to test each tool and follow instructions to run simple code in Python, R or Scala. To end the course, you will create a final project with a Jupyter Notebook on IBM Data Science Experience and demonstrate your proficiency preparing a notebook, writing Markdown, and sharing your work with your peers.LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

课程3
Data Science Methodology

Despite the recent increase in computing power and access to data over the last couple of decades, our ability to use the data within the decision making process is either lost or not maximized at all too often, we don't have a solid understanding of the questions being asked and how to apply the data correctly to the problem at hand.This course has one purpose, and that is to share a methodology that can be used within data science, to ensure that the data used in problem solving is relevant and properly manipulated to address the question at hand.

Accordingly, in this course, you will learn:
- The major steps involved in tackling a data science problem.
- The major steps involved in practicing data science, from forming a concrete business or research problem, to collecting and analyzing data, to building a model, and understanding the feedback after model deployment.
- How data scientists think!

LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

课程4
Python for Data Science and AI

This introduction to Python will kickstart your learning of Python for data science, as well as programming in general. This beginner-friendly Python course will take you from zero to programming in Python in a matter of hours.Module 1 - Python Basics
• Your first program
• Types
• Expressions and Variables
• String Operations

Module 2 - Python Data Structures
• Lists and Tuples
• Sets
• Dictionaries

Module 3 - Python Programming Fundamentals
• Conditions and Branching
• Loops
• Functions
• Objects and Classes

Module 4 - Working with Data in Python
• Reading files with open
• Writing files with open
• Loading data with Pandas
• Numpy

Finally, you will create a project to test your skills.

课程5
Databases and SQL for Data Science

Much of the world's data resides in databases. SQL (or Structured Query Language) is a powerful language which is used for communicating with and extracting data from databases. A working knowledge of databases and SQL is a must if you want to become a data scientist.The purpose of this course is to introduce relational database concepts and help you learn and apply foundational knowledge of the SQL language. It is also intended to get you started with performing SQL access in a data science environment.

The emphasis in this course is on hands-on and practical learning . As such, you will work with real databases, real data science tools, and real-world datasets. You will create a database instance in the cloud. Through a series of hands-on labs you will practice building and running SQL queries. You will also learn how to access databases from Jupyter notebooks using SQL and Python.

No prior knowledge of databases, SQL, Python, or programming is required.

Anyone can audit this course at no-charge. If you choose to take this course and earn the Coursera course certificate, you can also earn an IBM digital badge upon successful completion of the course.

LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

课程6
使用 Python 进行数据分析

Learn how to analyze data using Python. This course will take you from the basics of Python to exploring many different types of data. You will learn how to prepare data for analysis, perform simple statistical analysis, create meaningful data visualizations, predict future trends from data, and more!Topics covered:

1) Importing Datasets
2) Cleaning the Data
3) Data frame manipulation
4) Summarizing the Data
5) Building machine learning Regression models
6) Building data pipelines

Data Analysis with Python will be delivered through lecture, lab, and assignments. It includes following parts:

Data Analysis libraries: will learn to use Pandas, Numpy and Scipy libraries to work with a sample dataset. We will introduce you to pandas, an open-source library, and we will use it to load, manipulate, analyze, and visualize cool datasets. Then we will introduce you to another open-source library, scikit-learn, and we will use some of its machine learning algorithms to build smart models and make cool predictions.

If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge.

LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

课程7
Data Visualization with Python

"A picture is worth a thousand words". We are all familiar with this expression. It especially applies when trying to explain the insight obtained from the analysis of increasingly large datasets. Data visualization plays an essential role in the representation of both small and large-scale data.One of the key skills of a data scientist is the ability to tell a compelling story, visualizing data and findings in an approachable and stimulating way. Learning how to leverage a software tool to visualize data will also enable you to extract information, better understand the data, and make more effective decisions.

The main goal of this Data Visualization with Python course is to teach you how to take data that at first glance has little meaning and present that data in a form that makes sense to people. Various techniques have been developed for presenting data visually but in this course, we will be using several data visualization libraries in Python, namely Matplotlib, Seaborn, and Folium.

LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

课程8
使用 Python 进行机器学习

This course dives into the basics of machine learning using an approachable, and well-known programming language, Python. In this course, we will be reviewing two main components:
First, you will be learning about the purpose of Machine Learning and where it applies to the real world.
Second, you will get a general overview of Machine Learning topics such as supervised vs unsupervised learning, model evaluation, and Machine Learning algorithms.

In this course, you practice with real-life examples of Machine learning and see how it affects society in ways you may not have guessed!

By just putting in a few hours a week for the next few weeks, this is what you’ll get.
1) New skills to add to your resume, such as regression, classification, clustering, sci-kit learn and SciPy
2) New projects that you can add to your portfolio, including cancer detection, predicting economic trends, predicting customer churn, recommendation engines, and many more.
3) And a certificate in machine learning to prove your competency, and share it anywhere you like online or offline, such as LinkedIn profiles and social media.

If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge upon successful completion of the course.

课程9
Applied Data Science Capstone

This capstone project course will give you a taste of what data scientists go through in real life when working with data. You will learn about location data and different location data providers, such as Foursquare. You will learn how to make RESTful API calls to the Foursquare API to retrieve data about venues in different neighborhoods around the world. You will also learn how to be creative in situations where data are not readily available by scraping web data and parsing HTML code. You will utilize Python and its pandas library to manipulate data, which will help you refine your skills for exploring and analyzing data.

Finally, you will be required to use the Folium library to great maps of geospatial data and to communicate your results and findings.

If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge upon successful completion of the course.

LIMITED TIME OFFER: Subscription is only $39 USD per month for access to graded materials and a certificate.

课程项目

This professional certificate has a strong emphasis on applied learning. Except for the first course, all other courses include a series of hands-on labs and are performed in the IBM Cloud (without any cost to you). Throughout this Professional Certificate you are exposed to a series of tools, libraries, cloud services, datasets, algorithms, assignments and projects that will provide you with practical skills with applicability to real jobs that employers value, including:

Tools: Jupyter / JupyterLab, Zeppelin notebooks, R Studio, and Watson Studio

Libraries: Pandas, NumPy, Matplotlib, Seaborn, Folium, ipython-sql, Scikit-learn, ScipPy, etc.

Projects: random album generator, predict housing prices, best classifier model, battle of neighborhoods

常见问题

退款政策是如何规定的?

如果订阅,您可以获得 7 天免费试听,在此期间,您可以取消课程,无需支付任何罚金。在此之后,我们不会退款,但您可以随时取消订阅。请阅读我们完整的退款政策。

我可以只注册一门课程吗?

可以!点击您感兴趣的课程卡开始注册即可开始学习。注册并完成课程后,您可以获得可共享的证书,或者您也可以旁听该课程免费查看课程资料。如果您订阅的课程是某证书的一部分,系统会自动为您订阅完整的证书。访问您的学生面板,跟踪您的进度。

此课程是 100% 在线学习吗?是否需要现场参加课程?

此课程完全在线学习,无需到教室现场上课。您可以通过网络或移动设备随时随地访问课程视频、阅读材料和作业。

How long does it take to complete the Professional Certificate?

The certificate requires completion of 9 courses. Each course typically contains 3-6 modules with an average effort of 2 to 4 hours per module. If learning part-time (e.g. 1 module per week), it would take 6 to 12 months to complete the entire certificate. If learning full-time (e.g. 1 module per day) the certificate can be completed in 2 to 3 months.

What background knowledge is necessary?

This certificate is open for anyone with any job and academic background. No prior computer programming experience is necessary, but is an asset. Familiarity working with computers, high school math, communication and presentation skills. For the last few courses knowledge of Calculus and Linear Algebra is an asset but not an absolute requirement.

Do I need to take the courses in a specific order?

Yes, it is highly recommended to take the courses in the order they are listed, as they progressively build on concepts taught in previous courses. For example the Data Visualization, Python and Machine Learning courses require knowledge of Python.

Will I earn university credit for completing the Professional Certificate?

No, there is no University credits involved with taking these courses.

What will I be able to do upon completing the Professional Certificate?

Become job ready for a career in Data Science. Develop practical skills using hands-on labs in Cloud environments, projects and captsones.

I already completed some of the other courses in this Professional Certificate. Will I get "credit" for them?

If you have already completed some of the courses in this Professional Certificate, either individually or as part of another specialization, they will be marked as "Complete". So you do not have to take those courses again and will be able to finish the Professional Certificate faster. You will only need to complete the courses that you have not yet completed.

I have already completed the "Introduction to Data Science" Specialization. Can I still enrol for this Professional Certificate?

Yes, absolutely. Any courses that you have already completed as part of that Specialization will be marked as "Complete". So you do not have to take those courses again and will be able to finish the Professional Certificate faster.

Which should I enroll for - "Introduction to Data Science" Specialization, or this "Data Science Professional Certificate"?

This Professional Certificate consists of 9 courses. The "Introduction to Data Science" Specialization has 4 courses, all of which are also included in this Professional Certificate.

If you are unsure about your ability to commit to the level of effort and time required to complete this Professional Certificate, we recommend starting with the Introduction to Data Science Specialization, which has fewer courses. And if after earning the specialization certificate you are still determined to continue building your Data Science skills, you can then enroll for this Professional Certificate and then just complete the courses that are not in the specialization.

I have already completed the "Applied Data Science" Specialization. Can I still enroll for this Professional Certificate?

Yes, absolutely. Any courses that you have already completed as part of that Specialization will be marked as "Complete". So you do not have to take those courses again and will be able to finish this Professional Certificate faster.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 CMOOC.COM 慕课改变你,你改变世界