机器学习算法:监督学习

Machine Learning Algorithms: Supervised Learning Tip to Tail

662 次查看
阿尔伯塔机器科学研究院
Coursera
  • 完成时间大约为 13 个小时
  • 混合难度
  • 英语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

This course takes you from understanding the fundamentals of a machine learning project. Learners will understand and implement supervised learning techniques on real case studies to analyze business case scenarios where decision trees, k-nearest neighbours and support vector machines are optimally used. Learners will also gain skills to contrast the practical consequences of different data preparation steps and describe common production issues in applied ML.

To be successful, you should have at least beginner-level background in Python programming (e.g., be able to read and code trace existing code, be comfortable with conditionals, loops, variables, lists, dictionaries and arrays). You should have a basic understanding of linear algebra (vector notation) and statistics (probability distributions and mean/median/mode).

This is the second course of the Applied Machine Learning Specialization brought to you by Coursera and the Alberta Machine Intelligence Institute.

课程大纲

Classification using Decision Trees and k-NN

Welcome to Supervised Learning, Tip to Tail! This week we'll go over the basics of supervised learning, particularly classification, as well as teach you about two classification algorithms: decision trees and k-NN. You'll get started programming on the platform through Jupyter notebooks and start to familiarize yourself with all the issues that arise when using machine learning for classification.

Functions for Fun and Profit

Welcome to the second week of the course! In this week you'll learn all about regression algorithms, the other side of supervised learning. We'll introduce you to the idea of finding lines, optimization criteria, and all the associated issues. Through regression we'll see the interactions between model complexity and accuracy, and you'll get a first taste of how regression and classification might relate.

Regression for Classification: Support Vector Machines

This week we'll be diving straight in to using regression for classification. We'll describe all the fundamental pieces that make up the support vector machine algorithms, so that you can understand how many seemingly unrelated machine learning algorithms tie together. We'll introduce you to logistic regression, neural networks, and support vector machines, and show you how to implement two of those.

Contrasting Models

Now at the tail end of the course, we're going to go over how to know how well your model is actually performing and what you can do to get even better performance from it. We'll review assessment questions particular to regression and classification, and introduce some other tools that really help you analyze your model performance. The topics covered this week aim to give you confidence in your models, so you're ready to unlock the power of machine learning for your business goals.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界