数据科学促进商业创新

Data Science for Business Innovation

785 次查看
EIT 数字
Coursera
  • 完成时间大约为 8 个小时
  • 初级
  • 英语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

What is data science

How data science, machine learning, and data-driven innovation can benefit business outcomes

Foundational concepts and intuitions about machine learning techniques

课程概况

The course is a compendium of the must-have expertise in data science for executive and middle-management to foster data-driven innovation. It consists of introductory lectures spanning big data, machine learning, data valorization and communication. Topics cover the essential concepts and intuitions on data needs, data analysis, machine learning methods, respective pros and cons, and practical applicability issues.

The course covers terminology and concepts, tools and methods, use cases and success stories of data science applications.
The course explains what is Data Science and why it is so hyped. It discusses the value that Data Science can create, the main classes of problems that Data Science can solve, the difference is between descriptive, predictive and prescriptive analytics, and the roles of machine learning and artificial intelligence.

From a more technical perspective, the course covers supervised, unsupervised and semi-supervised methods, and explains what can be obtained with classification, clustering, and regression techniques. It discusses the role of NoSQL data models and technologies, and the role and impact of scalable cloud-based computation platforms.
All topics are covered with example-based lectures, discussing use cases, success stories and realistic examples.

课程大纲

Introduction to Data-driven Business

This module introduces the course and offers some basic overview of the topics. It presents the crucial concepts related to data science and big data and provides an outlook on how to use them in real world settings for increasing business value.

Terminology and Foundational Concepts

In this module, you will learn the foundational concepts of machine learning and data science. You will understand how these techniques can be useful in terms of increased business value for organizations, thanks to the discussion of a very well known success story, namely Netflix, which can be deemed as a completely data-driven business. You will also understand how machine learning is different from programming.

Data Science Methods for Business

In this module, you will learn the concepts and intuitions about the basic approaches for data analysis, including linear regression, naive Bayes, decision trees, clustering, and logistic regression. All the methods are presented starting from typical business uses and are covered in an intuitive way through a guided explanation of how the approach works on simple examples.

Challenges and Conclusions

This module summarizes the concepts learned so far and introduces a set of challenges and risks that data-savvy managers must take into account when deciding for a data-driven strategy.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 CMOOC.COM 慕课改变你,你改变世界