数据挖掘中的模式发现

1110 次查看
伊利诺伊大学香槟分校
Coursera
  • 完成时间大约为 16 个小时
  • 混合难度
  • 英语, 韩语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

Learn the general concepts of data mining along with basic methodologies and applications. Then dive into one subfield in data mining: pattern discovery. Learn in-depth concepts, methods, and applications of pattern discovery in data mining. We will also introduce methods for data-driven phrase mining and some interesting applications of pattern discovery. This course provides you the opportunity to learn skills and content to practice and engage in scalable pattern discovery methods on massive transactional data, discuss pattern evaluation measures, and study methods for mining diverse kinds of patterns, sequential patterns, and sub-graph patterns.

课程大纲

Course Orientation

The course orientation will get you familiar with the course, your instructor, your classmates, and our learning environment.

Module 1

Module 1 consists of two lessons. Lesson 1 covers the general concepts of pattern discovery. This includes the basic concepts of frequent patterns, closed patterns, max-patterns, and association rules. Lesson 2 covers three major approaches for mining frequent patterns. We will learn the downward closure (or Apriori) property of frequent patterns and three major categories of methods for mining frequent patterns: the Apriori algorithm, the method that explores vertical data format, and the pattern-growth approach. We will also discuss how to directly mine the set of closed patterns.

Module 2

Module 2 covers two lessons: Lessons 3 and 4. In Lesson 3, we discuss pattern evaluation and learn what kind of interesting measures should be used in pattern analysis. We show that the support-confidence framework is inadequate for pattern evaluation, and even the popularly used lift and chi-square measures may not be good under certain situations. We introduce the concept of null-invariance and introduce a new null-invariant measure for pattern evaluation. In Lesson 4, we examine the issues on mining a diverse spectrum of patterns. We learn the concepts of and mining methods for multiple-level associations, multi-dimensional associations, quantitative associations, negative correlations, compressed patterns, and redundancy-aware patterns.

Module 3

Module 3 consists of two lessons: Lessons 5 and 6. In Lesson 5, we discuss mining sequential patterns. We will learn several popular and efficient sequential pattern mining methods, including an Apriori-based sequential pattern mining method, GSP; a vertical data format-based sequential pattern method, SPADE; and a pattern-growth-based sequential pattern mining method, PrefixSpan. We will also learn how to directly mine closed sequential patterns. In Lesson 6, we will study concepts and methods for mining spatiotemporal and trajectory patterns as one kind of pattern mining applications. We will introduce a few popular kinds of patterns and their mining methods, including mining spatial associations, mining spatial colocation patterns, mining and aggregating patterns over multiple trajectories, mining semantics-rich movement patterns, and mining periodic movement patterns.

Week 4

Module 4 consists of two lessons: Lessons 7 and 8. In Lesson 7, we study mining quality phrases from text data as the second kind of pattern mining application. We will mainly introduce two newer methods for phrase mining: ToPMine and SegPhrase, and show frequent pattern mining may be an important role for mining quality phrases in massive text data. In Lesson 8, we will learn several advanced topics on pattern discovery, including mining frequent patterns in data streams, pattern discovery for software bug mining, pattern discovery for image analysis, and pattern discovery and society: privacy-preserving pattern mining. Finally, we look forward to the future of pattern mining research and application exploration.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 CMOOC.COM 慕课改变你,你改变世界