微积分:单变量第4部分 – 应用

Calculus: Single Variable Part 4 - Applications

530 次查看
宾夕法尼亚大学
Coursera
  • 完成时间大约为 29 个小时
  • 混合难度
  • 英语
注:本课程由Coursera和Linkshare共同提供,因开课平台的各种因素变化,以上开课日期仅供参考

课程概况

Calculus is one of the grandest achievements of human thought, explaining everything from planetary orbits to the optimal size of a city to the periodicity of a heartbeat. This brisk course covers the core ideas of single-variable Calculus with emphases on conceptual understanding and applications. The course is ideal for students beginning in the engineering, physical, and social sciences. Distinguishing features of the course include: 1) the introduction and use of Taylor series and approximations from the beginning; 2) a novel synthesis of discrete and continuous forms of Calculus; 3) an emphasis on the conceptual over the computational; and 4) a clear, dynamic, unified approach.

In this fourth part–part four of five–we cover computing areas and volumes, other geometric applications, physical applications, and averages and mass. We also introduce probability.

课程大纲

Computing Areas and Volumes

Having seen some calculus before, you may recall some of the motivations for integrals arising from area computations. We will review those classical applications, while introducing the core idea of this module -- a differential element. By computing area and volume elements, we will see how to tackle tough geometry problems in a principled manner.

Other Geometric Applications

There's more to geometry than just area and volume! In this module, we will take things "to the next level", ascending to higher dimensions. Coming back to the 3-d world, we will return to problems of length and area, but this time in the context of curves and surfaces. As always, the emphasis will be on how to construct the appropriate differential element for integrating.

Physical Applications

There is so much more to applications of integrals than geometry! So many subjects, from physics to finance, have, at heart, the need for setting up and computing definite integrals. In this short but intense module, we will cover applications including work, force, torque, mass, and present & future value.

Averages and Mass

There is a statistical aspect to integrals that has not yet been brought up in this course: integrals are ideal for computing averages. Motivated by physical problems of mass, centroid, and moments of inertia, we will cover applications of integrals to averages.

An Introduction to Probability

This capstone module gives a very brief introduction to probability, using what we know about integrals and differential elements. Beginning with common-sense uniform probabilities, we move on to define probability density functions and the corresponding probability element. Building on the physical intuition obtained from centers of mass and moments of inertia, we offer a unique perspective on expectation, variance, and standard deviation.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 CMOOC.COM 慕课改变你,你改变世界