你将学到什么
Pass back and forth between the time domain and the frequency domain using the Laplace Transform and its inverse.
Use a toolbox for computing with the Laplace Transform.
Describe the behavior of systems using the pole diagram of the transfer function.
Model for systems that have feedback loops.
Model sudden changes with delta functions and other generalized functions.
课程概况
This course is about the Laplace Transform, a single very powerful tool for understanding the behavior of a wide range of mechanical and electrical systems: from helicopters to skyscrapers, from light bulbs to cell phones. This tool captures the behavior of the system and displays it in highly graphical form that is used every day by engineers to design complex systems.
This course is centered on the concept of the transfer function of a system. Also called the system function, the transfer function completely describes the response of a system to any input signal in a highly conceptual manner. This visualization occurs not in the time domain, where we normally observe behavior of systems, but rather in the “frequency domain.” We need a device for moving from the time domain to the frequency domain; this is the Laplace transform.
We will illustrate these principles using concrete mechanical and electrical systems such as tuned mass dampers and RLC circuits.
The five modules in this series are being offered as an XSeries on edX. Please visit the Differential Equations XSeries Program Page to learn more and to enroll in the modules.
课程大纲
Review of differential equations
System function and frequency response
Laplace Transform
Rules and applications
Impulses and impulse response
Convolution
Feedback and filters
预备知识
18.031x (Introduction to Differential Equations)





