社交网络分析(SNA)

Social Network Analysis (SNA)

Learn how to conduct a social network analysis to better understand how people seek and share information in learning settings.

545 次查看
德州大学阿灵顿分校
edX
  • 完成时间大约为 3
  • 中级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

apply the basics of social network analysis (SNA) at the network level (density, clustering, degree distribution, etc.); at the node level (degree, betweenness, closeness); at the sub-graph level (triads, communities);

design a research study using relational data;

conduct SNA of data collected in a learning setting;

apply basic functions of igraph and statnet R packages to analyze data.

课程概况

In this course, you will learn how relationships between people, artifacts, and ideas within learning settings can be analyzed and interpreted through social network analysis (SNA). You will learn how to prepare data and map these relationships to help you understand how people communicate and exchange information.

The course will review foundational concepts and applications of social network analysis in learning analytics. You will also learn how to use igraph and statnet R packages to manipulate, analyze, and visualize network data.

课程大纲

Week 1: Navigating the Language of Networks
Introduction to networks including the basic concepts in social network analysis, i.e. nodes, edges, adjacency matrix, one and two-mode networks, node degree, connected components, average shortest path, diameter, preferential attachment, network centrality. The week will involve a hands-on task showing students how to calculate basic metrics in R.

Week 2: Applying Network Analysis in Educational Research
Overview of educational research and evidence produced using SNA applications, including differentiation between self-reported and digitally collected network data; ethical considerations; interpretation of basic metrics. The week’s task will include exploratory analysis of the selected dataset, and interpretation of results.

Week 3: The Use of Network Analytic Techniques in Learning Analytics
Introduction to the analysis of socio-technical networks, and applications of network analytic techniques in LA, i.e. community detection, bipartite network analysis, network clustering, integration with text analysis. Presentation of community detection, information flow analysis, and statistical approaches in network analysis. The students will be expected to select one approach out of those presented, and implement it on one of the suggested datasets in R.

预备知识

We highly recommend that you take the previous course in the series before beginning this course:
Learning Analytics Fundamentals

This course is intended for those who have a bachelor’s degree and are interested in developing learning analytics and data science skills for employment in education, corporate, nonprofit, and military sectors. Experience with programming and statistics will be beneficial to participants.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界