你将学到什么
How to compare and contrast translation in bacteria and eukaryotes
How to describe several mechanisms of RNA turnover and RNA splicing
How to analyze protein structures to infer functional information
How to design the best experiment to test a hypothesis
How to interpret data from translation and RNA processing experiments
课程概况
In Part 3 of 7.28x, you’ll explore translation of mRNA to protein, a key part of the central dogma of biology. Do you know how RNA turnover or RNA splicing affects the outcome of translation? Although not official steps in the central dogma, the mechanisms of RNA processing strongly influence gene expression.
Are you ready to go beyond the “what” of scientific information presented in textbooks and explore how scientists deduce the details of these molecular models?
Take a behind-the-scenes look at modern molecular biology, from the classic experimental events that identified the proteins and elements involved in translation and RNA splicing to cutting-edge assays that apply the power of genome sequencing. Do you feel confident in your ability to design molecular biology experiments and interpret data from them? We’ve designed the assessments in this course to build your experimental design and data analysis skills.
Let’s explore the limits of our current knowledge about the translation machinery and mechanisms of RNA turnover and splicing. If you are up for the challenge, join us in 7.28.3x Molecular Biology: RNA Processing and Translation.
课程大纲
Week 1: Translation I – Overview and Key Players
Week 2: Translation II – Elongation
Week 3: Translation III – Initiation and Termination
Week 4: Translation IV – Regulation of Translation
Week 5: RNA Splicing I – Mechanisms
Week 6: RNA Splicing II – Proofreading and Alternative Splicing
Week 7: RNA Turnover I – Assays and General Mechanisms
Week 8: RNA Turnover II – Specific Bacterial and Eukaryotic Mechanisms
预备知识
7.00x Introduction to Biology or similar (undergraduate biochemistry, molecular biology, and genetics), 7.28.1x and 7.28.2x Molecular Biology or similar (advanced understanding of the central dogma)