状态空间控制概论

Introduction to State Space Control

Learn physical, computational, and measured-data approaches to state-space modeling and control, by building a copter-levitated arm and then designing and testing high-performance microcontroller-based positioning systems.

1338 次查看
麻省理工学院
edX
  • 完成时间大约为 4
  • 中级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

State Space Methodology

State Space Control and Feedback

Observers

Black-box modeling from Frequency Domain Data

课程概况

The “sense-and-correct” nature of feedback controllers make them an appealing choice for systems whose actuators, or environments, are highly variable. If the system also requires high performance (e.g. an industrial robot, a car, or an aircraft), the usual approach is to use a state-space feedback controller derived from a physics-based model. And when performance is less critical (e.g. for toys and appliances), the traditional choice has been to tune a low-cost proportional-derivative-integral (PID) controller.

Over the last few years, much has changed. The dramatic decline in the cost of accurate sensors and fast microcontrollers have made state-space controllers practical even for inexpensive toys. In addition, modeling approaches have become far more reliant on measurement and computation rather than physics and analysis. In this course, we examine the theory and application of this arc of alternatives to control, starting with PID, then moving to physical-modeling and state-space, and ending with state-space using measurement-based modeling. In each case, you will design and test controllers with your own copter-levitated arm, to solidify your understanding and to gain insight in to the practical issues.

PLEASE NOTE: This is intended to be an advanced course and students should have a background in linear algebra and differential equations, as well as some experience with control systems. IN ADDITION: THIS IS A BETA COURSE, THINGS WILL GO WRONG. We are testing a new type of on-line class, one where students use advanced concepts to design and then examine performance results on their own hardware. There will be difficulties, and we will be updating content and focus in response to student input.

预备知识

Calculus, some linear algebra exposure, some control.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界