量子传输导论

Introduction to Quantum Transport

This course introduces the non-equilibrium Green’s function (NEGF) method widely used to describe quantum effects in nanoscale devices, along with its applications to spintronic devices.

860 次查看
普渡大学
edX
  • 完成时间大约为 5
  • 高级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

The Schrödinger equation

How the tight-binding model works

The concept of bandstructure and E(k) relations

Self-energy

Broadening

NEGF equations

Dephasing

课程概况

This course introduces the Schrödinger equation, using the tight-binding method to discuss the concept of bandstructure and E(k) relations, followed by an introduction to the NEGF method with simple illustrative examples. Concept of spinors is introduced along with the application of the NEGF method to spintronic devices.

No prior background in quantum mechanics or statistical mechanics is assumed.

This course is a part of a Purdue initiative that aims to complement the expertise that students develop with the breadth at the edges needed to work effectively in today’s multidisciplinary environment. These serious short courses require few prerequisites and provide a general framework that can be filled in with self-study when needed.

Students taking this course will be required to complete three (3) proctored exams using the edX online Proctortrack software.

Introduction to Quantum Transport is one course in a growing suite of unique, 1-credit-hour short courses being developed in an edX/Purdue University collaboration. Students may elect to pursue a verified certificate for this specific course alone or as one of the six courses needed for the edX/Purdue MicroMasters program in Nano-Science and Technology. For further information and other courses offered and planned, please see the Nano-Science and Technology page. Courses like this can also apply toward a Purdue University MSECE degree for students accepted into the full master’s program.

课程大纲

Week 1: Schrödinger Equation

1.1 Introduction
1.2 Wave Equation
1.3 Differential to Matrix Equation
1.4 Dispersion Relation
1.5 Counting States
Week 2: Schrödinger Equation (continued)

1.6 Beyond 1D
1.7 Lattice with a Basis
1.8 Graphene
1.9 Reciprocal Lattice/Valleys
1.10 Summing Up
Week 3: Contact-ing Schrödinger & Examples
2.1 Introduction
2.2 Semiclassical Model
2.3 Quantum Model
2.4 NEGF Equations
*2.5 Bonus Lecture, NOT covered on exams
2.6 Scattering Theory
Week 4: Contact-ing Schrödinger & Examples (continued)

2.7 Transmission
2.8 Resonant Tunneling
2.9 Dephasing
2.10 Summing Up
3.1 Bonus Lecture, NOT covered on exams
3.2 Quantum Point Contact
__ 3.3 - 3.10 Bonus Lectures, NOT covered on exams

Week 5: Spin Transport
4.1 Introduction
4.2 Magnetic Contacts
4.3 Rotating Contacts
4.4 Vectors and Spinors
4.5 - 4.6 Bonus Lectures NOT covered on exams
4.7 Spin Density/Current
__ 4.8-4.10 Bonus Lectures NOT covered on exams
Text: S. Datta, “Lessons from Nanoelectronics”, Part B: Quantum Transport, World Scientific, Second Edition 2017
The manuscript will be available for download at the course's website.

预备知识

Undergraduate degree in engineering or the physical sciences, specifically differential equations and linear algebra.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界