数据科学基础:预测与机器学习

Foundations of Data Science: Prediction and Machine Learning

Learn how to use machine learning, with a focus on regression and classification, to automatically identify patterns in your data and make better predictions.

1314 次查看
加州大学伯克利分校
edX
  • 完成时间大约为 6
  • 初级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Fundamental concepts of machine learning

Linear regression, correlation, and the phenomenon of regression to the mean

Classification using the k-nearest neighbors algorithm

How to compare and evaluate the accuracy of machine learning models

Basic probability and Bayes’ theorem

课程概况

One of the principal responsibilities of a data scientist is to make reliable predictions based on data. When the amount of data available is enormous, it helps if some of the analysis can be automated. Machine learning is a way of identifying patterns in data and using them to automatically make predictions or decisions. In this data science course, you will learn basic concepts and elements of machine learning.

The two main methods of machine learning you will focus on are regression and classification. Regression is used when you seek to predict a numerical quantity. Classification is used when you try to predict a category (e.g., given information about a financial transaction, predict whether it is fraudulent or legitimate).

For regression, you will learn how to measure the correlation between two variables and compute a best-fit line for making predictions when the underlying relationship is linear. The course will also teach you how to quantify the uncertainty in your prediction using the bootstrap method. These techniques will be motivated by a wide range of examples.

For classification, you will learn the k-nearest neighbor classification algorithm, learn how to measure the effectiveness of your classifier, and apply it to real-world tasks including medical diagnoses and predicting genres of movies.

The course will highlight the assumptions underlying the techniques, and will provide ways to assess whether those assumptions are good. It will also point out pitfalls that lead to overly optimistic or inaccurate predictions.

预备知识

Data 8.1x and Data 8.2x

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界