你将学到什么
How to model real world problems by 2x2 systems of differential equations
How to use matrix methods to solve homogeneous systems of 2 first order linear differential equations
How to use graphical methods to understand the qualitative behavior of linear and nonlinear systems, and how to apply linear approximation to nonlinear (autonomous) 2x2 systems
课程概况
Differential equations are the language of the models we use to describe the world around us. Most phenomena require not a single differential equation, but a system of coupled differential equations. In this course, we will develop the mathematical toolset needed to understand 2×2 systems of first order linear and nonlinear differential equations. We will use 2×2 systems and matrices to model:
predator-prey populations in an ecosystem,
competition for tourism between two states,
the temperature profile of a soft boiling egg,
automobile suspensions for a smooth ride,
pendulums, and
RLC circuits that tune to specific frequencies.
The five modules in this seriesare being offered as an XSeries on edX. Please visit the Differential EquationsXSeries Program Page to learn more and to enroll in the modules.
Wolf photo by Arne von Brill on Flickr (CC BY 2.0)
Rabbit photo by Marit & Toomas Hinnosaar on Flickr (CC BY 2.0)
课程大纲
Unit 1: Linear 2x2 systems
1. Introduction to systems of differential equations
2. Solving 2x2 homogeneous linear systems of differential equations
3. Complex eigenvalues, phase portraits, and energy
4. The trace-determinant plane and stability
Unit 2: Nonlinear 2x2 systems
5. Linear approximation of autonomous systems
6. Stability of autonomous systems
7. Nonlinear pendulum
预备知识
18.031x Introduction to Differential Equations (Scalar equations)
常见问题
Is 18.03Lx a prerequisite for this course?
No. The only prerequisite is 18.031x. 18.03Lx treats the special topic of the Laplace transform, and is aimed at more advanced and experienced students.