面向产品管理的数据科学与敏捷系统

Data Science and Agile Systems for Product Management

Deliver faster, higher quality, and fault-tolerant products regardless of industry using the latest in Agile, DevOps, and Data Science.

600 次查看
马里兰大学系统
edX
  • 完成时间大约为 4
  • 中级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Designing and modeling for fast feedback and idea sharing

System optimization with open architectures

Validating functions and verifying performance

Leveraging and enabling the system designs, platforms, and ecosystems

Lean Startup and Product Innovation Analytics

Developing the data collection and preparation pipeline for products and services

Analyzing the performance and testing hypotheses for usability, fast-feedback, and growth

Customer experience (CX) validation and enhancement leveraging usability analytics

课程概况

Modern systems today must be designed for agility in order to outpace the competition. Concepts like Agile, DevOps, and Data Science were once considered only for the technology-based companies. Today that means every company. Because there is no greater currency than timely information for optimizing operations and meeting the needs of customers.

Modern product management requires that every development and operations value stream is identified and continuously improved. This means using Lean and DevOps principles to streamline handoffs and information flows across teams. It means reorienting towards self-service and automation wherever possible. And to avoid incrementalism, it means a robust Agile development process to keep innovations important and aggressive enough to make noticeable improvements in value delivery.

Agile systems in a DevOps environment requires that products are built completely differently from a traditional designs. Modularity, open set architectures, and flexible data management paradigms are a starting point. The evolutionary nature of the product with so much change enables functionality, design, and technology to drive and influence each other simultaneously. And beneath it all is a data collection and feedback loop essential for anticipating and reacting to business needs both for operations and marketing.

Data science and analytics are the lifeblood of any product organization, and enable product managers to tackle risks early. Luckily, new technologies allow us to collect and integrate data without extreme upfront constraints and onerous controls. This means all data is fair game, and when tagged and stored properly, can be made available at nearly any scale for preparation, visualization, analysis, and modeling.

We’ll teach you the paradigms, processes, and introduce some key technologies that make the data-driven product organization the optimal competitor in the market.

课程大纲

Module 1: Agile Systems Engineering

Module 2: DevOps Principles for Business Agility

Module 3: Data Science for Product Risk Management

Module 4: Implementing Data-Driven Controls using Technology and Teams

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 CMOOC.COM 慕课改变你,你改变世界