计算机视觉与图像分析

Computer Vision and Image Analysis

A deep dive into Computer Vision and Image Analysis using Python.

1094 次查看
微软
edX
  • 完成时间大约为 4
  • 中级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Explore, manipulate, and analyze images using Python packages for computer vision.

Implement image classification using classical machine learning and deep learning techniques.

Use data augmentation and transfer learning to create highly-effective convolutional neural networks (CNNs)

Go beyond image classification to use object detection and semantic segmentation models.

课程概况

Computer Vision is the art of distilling actionable information from images.

In this hands-on course, we’ll learn about Image Analysis techniques using Python packages like PIL, Scikit-Image, OpenCV, and others. You’ll then explore machine learning for computer vision, including deep learning techniques for image classification, object detection, and semantic segmentation; using industry-standard machine learning frameworks like SciKit-Learn, Keras, and PyTorch.

预备知识

Working knowledge of Python
Skills equivalent to the following courses
DAT263x: Introduction to AI
DAT236x: Deep Learning Explained

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2020 CMOOC.COM 慕课改变你,你改变世界