Warning: WP Redis: Connection refused in /www/wwwroot/cmooc.com/wp-content/plugins/powered-cache/includes/dropins/redis-object-cache.php on line 1433
大数据基础 | MOOC中国 - 慕课改变你,你改变世界

大数据基础

Big Data Fundamentals

Learn how big data is driving organisational change and essential analytical tools and techniques, including data mining and PageRank algorithms.

1131 次查看
阿德莱德大学
edX
  • 完成时间大约为 10
  • 中级
  • 英语
注:因开课平台的各种因素变化,以上开课日期仅供参考

你将学到什么

Knowledge and application of MapReduce

Understanding the rate of occurrences of events in big data

How to design algorithms for stream processing and counting of frequent elements in Big Data

Understand and design PageRank algorithms

Understand underlying random walk algorithms

课程概况

Organizations now have access to massive amounts of data and it’s influencing the way they operate. They are realizing in order to be successful they must leverage their data to make effective business decisions.

In this course, part of the Big Data MicroMasters program, you will learn how big data is driving organisational change and the key challenges organizations face when trying to analyse massive data sets.

You will learn fundamental techniques, such as data mining and stream processing. You will also learn how to design and implement PageRank algorithms using MapReduce, a programming paradigm that allows for massive scalability across hundreds or thousands of servers in a Hadoop cluster. You will learn how big data has improved web search and how online advertising systems work.

By the end of this course, you will have a better understanding of the various applications of big data methods in industry and research.

课程大纲

Section 1: The basics of working with big data
Understand the four V’s of Big Data (Volume, Velocity, and Variety); Build models for data; Understand the occurrence of rare events in random data.
Section 2: Web and social networks
Understand characteristics of the web and social networks; Model social networks; Apply algorithms for community detection in networks.
Section 3: Clustering big data
Clustering social networks; Apply hierarchical clustering; Apply k-means clustering.
Section 4: Google web search
Understand the concept of PageRank; Implement the basic; PageRank algorithm for strongly connected graphs; Implement PageRank with taxation for graphs that are not strongly connected.
Section 5: Parallel and distributed computing using MapReduce
Understand the architecture for massive distributed and parallel computing; Apply MapReduce using Hadoop; Compute PageRank using MapReduce.
Section 6: Computing similar documents in big data
Measure importance of words in a collection of documents; Measure similarity of sets and documents; Apply local sensitivity hashing to compute similar documents.
Section 7: Products frequently bought together in stores
Understand the importance of frequent item sets; Design association rules; Implement the A-priori algorithm.
Section 8: Movie and music recommendations
Understand the differences of recommendation systems; Design content-based recommendation systems; Design collaborative filtering recommendation systems.
Section 9: Google's AdWordsTM System
Understand the AdWords System; Analyse online algorithms in terms of competitive ratio; Use online matching to solve the AdWords problem.
Section 10: Mining rapidly arriving data streams
Understand types of queries for data streams; Analyse sampling methods for data streams; Count distinct elements in data streams; Filter data streams.

预备知识

Candidates interested in pursuing the MicroMasters program in Big Data are advised to completeProgramming for Data ScienceandComputational Thinking and Big Databefore undertaking this course.

常见问题

Question: This course is self-paced, but is there a course end date?
Answer: Yes. The first course release started on May 15, 2017 and ends on December 1, 2018.
The new release of the course starts on December 1, 2018 and ends on December 1, 2020.

千万首歌曲。全无广告干扰。
此外,您还能在所有设备上欣赏您的整个音乐资料库。免费畅听 3 个月,之后每月只需 ¥10.00。
Apple 广告
声明:MOOC中国十分重视知识产权问题,我们发布之课程均源自下列机构,版权均归其所有,本站仅作报道收录并尊重其著作权益。感谢他们对MOOC事业做出的贡献!
  • Coursera
  • edX
  • OpenLearning
  • FutureLearn
  • iversity
  • Udacity
  • NovoEd
  • Canvas
  • Open2Study
  • Google
  • ewant
  • FUN
  • IOC-Athlete-MOOC
  • World-Science-U
  • Codecademy
  • CourseSites
  • opencourseworld
  • ShareCourse
  • gacco
  • MiriadaX
  • JANUX
  • openhpi
  • Stanford-Open-Edx
  • 网易云课堂
  • 中国大学MOOC
  • 学堂在线
  • 顶你学堂
  • 华文慕课
  • 好大学在线CnMooc
  • (部分课程由Coursera、Udemy、Linkshare共同提供)

© 2008-2022 CMOOC.COM 慕课改变你,你改变世界